People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research 20 Août 1955-Skikda University Sciences Faculty Computer Science Department

Evolutionary Algorithms

Course teacher: Dr. Soufiane Boulehouache College year 2023/2024

Tutorial Assignment n°1: Coding

Exercise 1. Knapsack Problem

Version 1. Subset Sum Problem

The Simple Knapsack problem takes a set of integers $S = \{w_1, \dots, w_n\}$ and an integer w as inputs. The objective is to compute a subset $T \subseteq \{1, \dots, n\}$ of items such that $\sum_{i \in T} w_i \leq w$ and $\sum w_i$ is maximum. That is, we want to fill our knapsack without exceeding its capacity w and putting the maximum total weight in it.

Solve this problem in case $S = \{5, 8, 11, 15, 20, 30, 32, 37, 41, 53, 56, 62\}$ and b = 123.

Max
$$(\sum_{i=1}^{n} w_i * x_i)$$
 and $\sum_{i=1}^{n} x_i w_i \le w$; $x_i \in \{0, 1\}, j \in \mathbb{N}^*$.

Version 2.

There are *n* items; each item has its own benefit c_i and weight w_i .

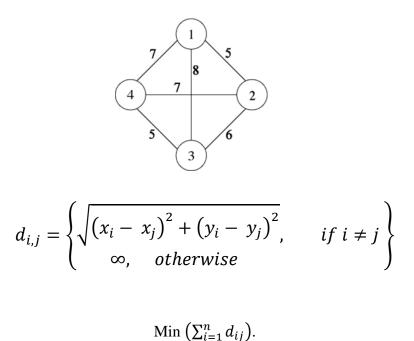
There is a Knapsack of total capacity w.

We would like to maximize the benefit but not exceeding the capacity w of the Knapsack.

It means:

Max
$$(\sum_{i=1}^{n} c_i x_i)$$
 and $\sum_{i=1}^{n} x_i w_i \le w$; $x_i \in \{0, 1\}$.

Instance of the problem


Item	Cost	Weight
Item 1	5	4
Item 2	12	10
Item 3	8	5
Item 4	17	7
Item 5	3	2
Item 6	11	9

Solve this problem in the case of Evolutionary Algorithms.

People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research 20 Août 1955-Skikda University Sciences Faculty Computer Science Department

Exercise 2. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) can be modeled using a graph consisting of a set of vertices and a set of edges. Each vertex represents a city, an edge symbolizes the passage from one city to another, and it is associated with a weight that can represent a distance, a travel time or even a cost.

Solve this problem in the case of Evolutionary Algorithms.