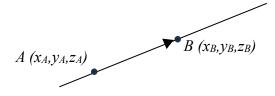
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH UNIVERSITY OF 20 AOÛT 1955 – SKIKDA

ACADEMIC YEAR 2023/2024

DEPARTMENT OF COMPUTER SCIENCE FACULTY OF SCIENCES

TUTORIAL SHEET N°1: VECTORS AND DERIVATIVES

1- Vectors



$$\overrightarrow{AB} = (x_B - x_A)\vec{\iota} + (y_B - y_A)\vec{j} + (z_B - z_A)\vec{k}$$

$$\vec{V} = \vec{AB} = x_V \vec{i} + y_V \vec{j} + z_V \vec{k} \implies \begin{cases} x_V = x_B - x_A \\ y_V = y_B - y_A \\ z_V = z_B - z_A \end{cases}$$

$\vec{V} + \vec{K} = (x_V + x_K)\vec{\iota} + (y_V + y_K)\vec{J} + (z_V + z_K)\vec{k}$	Addition of vectors
$\vec{V} - \vec{K} = (x_V - x_K)\vec{\iota} + (y_V - y_K)\vec{j} + (z_V - z_K)\vec{k}$	Subtraction of vectors
$\vec{V} \cdot \vec{K} = \ \vec{V}\ \cdot \ \vec{K}\ \cdot \cos \theta$ $\vec{V} \cdot \vec{K} = (x_V \cdot x_K) + (y_V \cdot y_K) + (z_V \cdot z_K)$	Dot product (scalar product) Analytical writing of Scalar product
$\begin{aligned} \left \vec{V} \wedge \vec{K} \right &= \left\ \vec{V} \right\ \cdot \left\ \vec{K} \right\ \cdot \sin \theta \\ \vec{V} \wedge \vec{K} &= (y_V z_K - z_V y_K) \vec{\iota} - (x_V z_K - z_V x_K) \vec{J} + (x_V y_K - y_V x_K) \vec{k} \end{aligned}$	Cross product (Vector product) Analytical writing of Vector product
$ec{V} = \ ec{V}\ \cdot ec{U}$	Unit vector associated with each vector (\vec{U})
$\vec{V} \parallel \vec{K} \Longrightarrow \vec{V} \land \vec{K} = \vec{0} \& \vec{V} \perp \vec{K} \Longrightarrow \vec{V} \cdot \vec{K} = \vec{0}$	Parallel and perpendicularity of two vectors

Exercise 01

The components of A(x_A, y_A, z_A), B(x_B, y_B, z_B) and C(x_C, y_C, z_C) are recorded in the corresponding table :

	x	У	Z
Α	1	-2	3
В	1	2	1
С	2	0	0

- 1- Write the vectors (\overrightarrow{AB}) , (\overrightarrow{AC}) and (\overrightarrow{BC}) , then represent them in the orthogonal basis (*Oxyz*)
- 2- Determine the magnitudes $(\|\overline{AB}\|), (\|\overline{AC}\|)$ and $(\|\overline{BC}\|)$
- 3- What is the unit vector associated with each vector ?
- 4- Find the result of :

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BC} = ?$$

$$\overrightarrow{AB} - \overrightarrow{BC} = ?$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = ?$$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = ?$$

$$\overrightarrow{AB} \cdot (\overrightarrow{AC} \wedge \overrightarrow{BC}) = ?$$

5- Find the relationship between (x, y, z) components of $\vec{V} (\vec{V} = x \vec{i} + y \vec{j} + z \vec{k})$ when $\vec{V} \parallel \vec{AC}$

2- Derivative

$\frac{d\vec{V}}{dt} = \frac{\partial x_V}{\partial t}\vec{i} + \frac{\partial y_V}{\partial t}\vec{j} + \frac{\partial z_V}{\partial t}\vec{k}$		Derivative of a vector with
$d(\vec{V}\cdot\vec{K}) = d(\vec{V})\cdot\vec{K} + \vec{V}\cdot d(\vec{K})$	$\frac{d}{dt}(\vec{V}\wedge\vec{K}) = \frac{d}{dt}(\vec{V})\wedge\vec{K} + \vec{V}\wedge\frac{d}{dt}(\vec{K})$	respect to time
$\frac{d\sin\theta}{dt} = \frac{d\theta}{dt}\cos\theta$	$\frac{d\cos\theta}{dt} = -\frac{d\theta}{dt}\sin\theta$	Derivatives of trigonometric and exponential
$\frac{d(\ln x)}{dt} = \frac{dx}{dt} \left(\frac{1}{x}\right)$	$\frac{d(e^x)}{dt} = \frac{dx}{dt} \cdot e^x$	Functions
$\cos^2\theta + \sin^2\theta = 1$	$\cos^2\theta = \frac{1+\cos 2\theta}{2}$	Useful
$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$	$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$	relationships

Exercise 02

We have:

$$\begin{bmatrix} \vec{V} = x \,\vec{i} - y \,\vec{j} + z \,\vec{k} \\ \vec{K} = 2x \,\vec{i} + \frac{y}{4} \,\vec{j} \end{bmatrix}$$

- 1- Find the derivative formula $\left(\frac{d\vec{v}}{dt}\right)$ and $\left(\frac{d\vec{k}}{dt}\right)$ when $(x = t^2 2)$, $(y = -t^3)$ and (z = t), then calculate the magnitude of the obtained result at t = 3 sec
- 2- Determine $(\vec{V} \cdot \vec{K})$ and $(\vec{V} \wedge \vec{K})$, then calculate $\left(\frac{d(\vec{V} \cdot \vec{K})}{dt}\right)$ and $\left(\frac{d(\vec{V} \wedge \vec{K})}{dt}\right)$, when : a. $x = t^2 - 2t$, $y = -t^3$ and z = tb. $x = \sin 2t$, $y = 2\cos 2t$ and z = 0
 - c. x = ln3t, $y = e^{2t}$ and z = 0

Exercise 03

The time equations of motion of a moving object are written as follows:

$$\begin{cases} x = t^2 - 2\\ y = -t^2\\ z = t \end{cases}$$

- 1- Determine the position vectors \overrightarrow{OM} , calculate its magnitude when t = 2sec and then draw it in the homogeneous orthogonal coordinate reference (*Oxyz*)
- 2- Find the velocity (\vec{V}) and acceleration (\vec{a}) vectors. Calculate their magnitudes at t = 2 sec