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B. Polar Coordinate System: 

Polar coordinates are a way of representing points in a two-dimensional system. Unlike 

the typical Cartesian coordinates (𝑥, 𝑦), which use perpendicular axes, polar coordinates 

use a distance from a reference point (origin) and an angle relative to a reference direction. 

 

In polar coordinates, a point (moving object) is described by its distance from the origin 

(denoted by "𝜌") and the angle formed by the line connecting the point and the origin 

with the reference direction (usually the positive x-axis), denoted by "𝜃" (theta). 

 The representation of a point in polar coordinates is written as (𝜌, 𝜃), where "𝜌" is the 

radial distance and "𝜃" is the angle in standard position. 

(𝑈𝜌
⃗⃗ ⃗⃗ ⃗, 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) represent the unit vectors in polar coordinates, similar to how (𝑖, 𝑗) represent the 

unit vectors in cartesian coordinates. 

i. 𝑼𝝆
⃗⃗⃗⃗⃗⃗  : Associated with changes in the distance (𝜌) 

ii. 𝑼𝜽
⃗⃗⃗⃗⃗⃗  :  Related to changes in the angle (𝜃) 

 

 

As mentioned above, it is evident that polar coordinates are linked to Cartesian 

coordinates. This is why a relationship between Cartesian coordinates (x, y) and polar 

coordinates (ρ, θ) can be expressed as follows: 
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𝑥 = 𝜌 ∙ cos 𝜃 

𝑦 = 𝜌 ∙ sin 𝜃 

Converting between polar and Cartesian coordinates requires utilizing trigonometric 

functions to establish the relationship between distance 𝜌 and angle 𝜃 with the x and y 

coordinates.  

This process works in both directions, allowing one to determine the distance and angle 

from given x and y coordinates or to find x and y coordinates from a given distance 𝜌 and 

angle 𝜃. 

✓ Position vector 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ : The position vector in polar coordinates, like any vector, equals 

the product of its magnitude (‖𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗‖) and its associated unit vector (𝑈𝜌
⃗⃗ ⃗⃗ ⃗). 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = ‖𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ ∙ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ 

Given that the magnitude (‖𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗‖) corresponds to the distance (𝜌), the polar position 

vector can be represented as follows: 

‖𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ = 𝜌 ⇒ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜌 ∙ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ 
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Much like the relationship between cartesian coordinates (𝑥, 𝑦) and polar coordinates 

(𝜌, 𝜃), a direct correlation between the unit vectors of both systems (𝑖, 𝑗) and (𝑈𝜌
⃗⃗ ⃗⃗ ⃗, 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) can 

be established by projecting (𝑈𝜌
⃗⃗ ⃗⃗ ⃗, 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) onto the x and y axes. 

Projection onto x-axis:      

𝑈𝜌
⃗⃗ ⃗⃗ ⃗ = ‖𝑈𝜌

⃗⃗ ⃗⃗ ⃗‖ ∙ 𝑐𝑜𝑠 𝜃 𝑖 + ‖𝑈𝜌
⃗⃗ ⃗⃗ ⃗‖ ∙ 𝑠𝑖𝑛 𝜃 𝑗 

Given that the magnitude of the polar unit vector, ‖𝑈𝜌
⃗⃗ ⃗⃗ ⃗‖ = 1 , then: 

𝑈𝜌
⃗⃗ ⃗⃗ ⃗ = 𝑐𝑜𝑠 𝜃 𝑖 + 𝑠𝑖𝑛 𝜃 𝑗 

Projection onto y-axis:      

𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = ‖𝑈𝜃

⃗⃗ ⃗⃗ ⃗‖ ∙ 𝑠𝑖𝑛 𝜃 (−𝑖) + ‖𝑈𝜃
⃗⃗ ⃗⃗ ⃗‖ ∙ 𝑐𝑜𝑠 𝜃 𝑗 

𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = − ‖𝑈𝜃

⃗⃗ ⃗⃗ ⃗‖ ∙ sin 𝜃 𝑖 + ‖𝑈𝜃
⃗⃗ ⃗⃗ ⃗‖ ∙ 𝑐𝑜𝑠 𝜃 𝑗 

Considering that the magnitude of the polar unit vector is ‖𝑈𝜃
⃗⃗ ⃗⃗ ⃗‖ = 1 , then: 

𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = − 𝑠𝑖𝑛 𝜃 𝑖 + 𝑐𝑜𝑠 𝜃  𝑗 

✓ Velocity vector: The velocity vector (�⃗⃗�) is the derivative of the position vector (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗) 

with respect to time (t). 

�⃗⃗� =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡
=

𝑑

𝑑𝑡
(𝜌. 𝑈𝜌

⃗⃗ ⃗⃗ ⃗) 

�⃗⃗� =
𝑑

𝑑𝑡
(𝜌) ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙
𝑑

𝑑𝑡
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗) = 𝑉𝜌𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + 𝑉𝜃 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

The solution of the derivative (
𝑑

𝑑𝑡
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗)) is presented below: 

𝑑

𝑑𝑡
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
(cos 𝜃 𝑖 + sin 𝜃 𝑗) 

𝑑

𝑑𝑡
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
𝑐𝑜𝑠 𝜃) 𝑖 +

𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃) 𝑗 

Given  
𝑑

𝑑𝑡
𝑈𝜌
⃗⃗ ⃗⃗ ⃗ = 𝑈𝜌

⃗⃗ ⃗⃗ ⃗̇ , therefore: 

𝑑

𝑑𝑡
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗) = 𝑈𝜌
⃗⃗ ⃗⃗ ⃗̇ = (

𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜃)) 𝑖 + (

𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃)) 𝑗 
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Generally, both 𝜌 and 𝜃 change over time, which is why their derivatives can be 

expressed as follows: 

𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜃) =

𝑑𝜃

𝑑𝜃
×

𝑑 cos 𝜃

𝑑𝑡
=

𝑑𝜃

𝑑𝑡
×

𝑑 cos 𝜃

𝑑𝜃
 

𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜃) =

𝑑𝜃

𝑑𝑡
× (− sin 𝜃) 

Considering  
𝑑𝜃

𝑑𝑡
= �̇�, thus: 

𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜃) = − �̇� ∙ sin 𝜃 

Similarly: 

𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃) =

𝑑𝜃

𝑑𝜃
×

𝑑 𝑠𝑖𝑛 𝜃

𝑑𝑡
=

𝑑𝜃

𝑑𝑡
×

𝑑 𝑠𝑖𝑛 𝜃

𝑑𝜃
 

𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃) =

𝑑𝜃

𝑑𝑡
× (cos 𝜃) ⇒

𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃) = �̇� ∙ cos 𝜃 

So, 

 

Hence: 

𝑑

𝑑𝑡
𝑈𝜌
⃗⃗ ⃗⃗ ⃗ = �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

Finally, the velocity vector can be depicted as follows: 

�⃗⃗� = �̇� ∙ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

We deduce that the polar components of the velocity vector (�⃗⃗�) are :  

𝑉𝜌 = �̇� and 𝑉𝜃 = 𝜌 ∙ �̇� 

✓ Acceleration vector: The acceleration vector (�⃗�) is either the derivative of the velocity 

vector (�⃗⃗�) or the second derivative of the position vector (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗) with respect to         

time (t): 

�⃗� =
𝑑�⃗⃗�

𝑑𝑡
=

𝑑2𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡2
 

𝑑

𝑑𝑡
𝑈𝜌
⃗⃗ ⃗⃗ ⃗ = 𝑈𝜌

⃗⃗ ⃗⃗ ⃗̇ = −𝜃 ∙̇ sin 𝜃 𝑖 + �̇� ∙ cos 𝜃 𝑗 = �̇�(− sin 𝜃 𝑖 + cos 𝜃 𝑗) 

 = 𝑼𝜽
⃗⃗⃗⃗⃗⃗  
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Upon substitution, the expression for the acceleration vector (�⃗�) becomes:  

�⃗� =
𝑑2𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡2
=

𝑑2

𝑑𝑡2
(𝜌. 𝑈𝜌

⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
(

𝑑

𝑑𝑡
(𝜌 ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗)) 

 

The expression for acceleration (�⃗�) can be developed by taking the derivative of the 

velocity components with respect to time as follows:  

�⃗� =
𝑑�⃗⃗�

𝑑𝑡
=

𝑑

𝑑𝑡
(�̇� ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ �̇� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗) 

Expanding this derivative will provide the expression for the acceleration in polar 

coordinates: 

�⃗� =
𝑑

𝑑𝑡
(�̇� ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗) +
𝑑

𝑑𝑡
(𝜌 ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

�⃗� =
𝑑

𝑑𝑡
(�̇�) ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙̇
𝑑

𝑑𝑡
(𝑈𝜌
⃗⃗ ⃗⃗ ⃗) +

𝑑

𝑑𝑡
(𝜌) ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙
𝑑

𝑑𝑡
(�̇�) ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ �̇� ∙
𝑑

𝑑𝑡
(𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

To expand on this, the derivative of the unit vector (𝑈𝜃
⃗⃗ ⃗⃗ ⃗) with respect to time can be 

developed as follows: 

𝑑

𝑑𝑡
(𝑈𝜃

⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
(− sin 𝜃 𝑖 + cos 𝜃 𝑗) 

𝑑

𝑑𝑡
(𝑈𝜃

⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
(− 𝑠𝑖𝑛 𝜃) 𝑖 +

𝑑

𝑑𝑡
(cos 𝜃)𝑗 

Given  
𝑑

𝑑𝑡
𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = 𝑈𝜃

⃗⃗ ⃗⃗ ⃗̇ , hence: 

𝑑

𝑑𝑡
(𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = 𝑈𝜃
⃗⃗ ⃗⃗ ⃗̇ = (

𝑑

𝑑𝑡
(− sin 𝜃)) 𝑖 + (

𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜃)) 𝑗 

Simplifying this formula by substituting the derivative of cos 𝜃 and sin 𝜃 with respect to 

time results in:  

Therefore, the derivative of (𝑈𝜃
⃗⃗ ⃗⃗ ⃗) with respect to time is expressed as: 

𝑑

𝑑𝑡
𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = − �̇� ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ 

𝑑

𝑑𝑡
𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = 𝑈𝜃

⃗⃗ ⃗⃗ ⃗̇ = − 𝜃 ∙̇ cos 𝜃 𝑖 + �̇� ∙ (− sin 𝜃) 𝑗 = −�̇�(sin 𝜃 𝑖 + cos 𝜃 𝑗) 

 

= �⃗⃗⃗� 

= 𝑼𝝆
⃗⃗⃗⃗⃗⃗  
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The replacement of various terms in the acceleration vector (�⃗�) is expressed as:  

�⃗� = �̈� ∙ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙̇ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ �̈� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ �̇� ∙ (− �̇� ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗) 

�⃗� = �̈� ∙ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙̇ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙̇ �̇� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ �̈� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ − 𝜌 ∙ �̇�2 ∙ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ 

Upon rearranging the previous relationship, the final formula for the acceleration vector 

(�⃗�) in polar coordinates is expressed as: 

�⃗� = (�̈� − 𝜌 ∙ �̇�2) 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + (𝜌 ∙ �̈� + 2 𝜌 ∙̇ �̇�) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

We deduce that the polar components of the acceleration vector (�⃗�) are:  

𝑎𝜌 = �̈� − 𝜌 ∙ �̇�2  and  𝑎𝜃 = 𝜌 ∙ �̈� + 2 𝜌 ∙̇ �̇� 

Exercise: 

Given a particle moving in the plane with position defined in polar coordinates as 𝑃(𝜌, 𝜃), 

where 𝜌 represents the radial distance from the origin and 𝜃 is the angle with respect to a 

reference axis. Given 𝜌 = 2𝑡 and 𝜃 =
𝜋

3
𝑡. 

1. Express the position vector 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ of the particle in terms of Cartesian coordinates (𝑥, 𝑦).  

2. Determine the velocity vector �⃗⃗� of the particle in terms of the unit vectors 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ and 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

3. Find the expression for the acceleration vector �⃗� in polar coordinates. 

Solution 

1. The position vector (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗) expressed in terms of Cartesian coordinates 𝑥 and 𝑦 using 

polar coordinates ρ and θ is as follows: 

The position vector is defined in Cartesian coordinate as follows:  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑥 𝑖 + 𝑦 𝑗 

Given:                                            𝑥 =  𝜌 ∙ cos 𝜃 and 𝑦 =  𝜌 ∙ 𝑠𝑖𝑛 𝜃 

Therefore:                                         𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜌 ∙ cos 𝜃  𝑖 + 𝜌 ∙ sin 𝜃  𝑗  

By substituting the polar coordinate values 𝜌 = 2𝑡 and 𝜃 =
𝜋

3
𝑡, into the expression for 

the position vector, the result is: 

                                                      𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 2𝑡 ∙ cos (
𝜋

3
𝑡) 𝑖 + 2𝑡 ∙ sin(

𝜋

3
𝑡) 𝑗 
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2. The expression for the velocity vector (�⃗⃗�) in terms of polar coordinates ρ and θ is 

developed through differentiation as follows: 

Initially, the velocity is represented as: 

�⃗⃗� =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡
=

𝑑

𝑑𝑡
(2𝑡 ∙ cos

𝜋

3
𝑡 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ sin
𝜋

3
𝑡 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

�⃗⃗� =
𝑑

𝑑𝑡
(2𝑡 ∙ cos

𝜋

3
𝑡 𝑈𝜌

⃗⃗ ⃗⃗ ⃗) +
𝑑

𝑑𝑡
(2𝑡 ∙ sin

𝜋

3
𝑡 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

Expanding the differentiation according to the derivative rules and applying the given 

derivatives related to 𝑡 and the unit vectors, we derive: 

�⃗⃗� =
𝑑

𝑑𝑡
(2𝑡) ∙ 𝑐𝑜𝑠 (

𝜋

3
𝑡) 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙
𝑑

𝑑𝑡
(𝑐𝑜𝑠 (

𝜋

3
𝑡)) 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ 𝑐𝑜𝑠 (
𝜋

3
𝑡)

𝑑

𝑑𝑡
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗)       

+
𝑑

𝑑𝑡
(2𝑡) ∙ sin (

𝜋

3
𝑡) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙
𝑑

𝑑𝑡
(𝑠𝑖𝑛 (

𝜋

3
𝑡)) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ 𝑠𝑖𝑛 (
𝜋

3
𝑡)

𝑑

𝑑𝑡
(𝑈𝜃

⃗⃗ ⃗⃗ ⃗)  

Let's replace the given derivatives and relations involving the unit vectors into the 

previously derived expression for the velocity vector (�⃗⃗�) to simplify it accordingly. 

Given: 

𝑑

𝑑𝑡
(2𝑡) = 2 

𝑑

𝑑𝑡
(𝑐𝑜𝑠 (

𝜋

3
𝑡)) = −

𝜋

3
 𝑠𝑖𝑛 (

𝜋

3
𝑡) 

𝑑

𝑑𝑡
(𝑠𝑖𝑛 (

𝜋

3
𝑡)) =

𝜋

3
 𝑐𝑜𝑠 (

𝜋

3
𝑡) 

𝑑

𝑑𝑡
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗) = 𝜃 ̇ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗  and  

𝑑

𝑑𝑡
(𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = − 𝜃 ̇ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ 

Now let's substitute these derivatives and relations into the expression for the velocity 

vector (�⃗⃗�) to simplify it: 

�⃗⃗� = 2 ∙ 𝑐𝑜𝑠 (
𝜋

3
𝑡) 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ (−
𝜋

3
 𝑠𝑖𝑛 (

𝜋

3
𝑡)) 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ 𝑐𝑜𝑠 (
𝜋

3
𝑡) ∙ (𝜃 ̇ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗)                            

+ 2 ∙ sin (
𝜋

3
𝑡) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ (
𝜋

3
 𝑐𝑜𝑠 (

𝜋

3
𝑡)) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ 𝑠𝑖𝑛 (
𝜋

3
𝑡) ∙ (− 𝜃 ̇ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗) 

The rearranged formula for the velocity vector (�⃗⃗�) becomes: 
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�⃗⃗� = [2 ∙ 𝑐𝑜𝑠 (
𝜋

3
𝑡) −  2 𝜃 ̇ 𝑡 ∙ 𝑠𝑖𝑛 (

𝜋

3
𝑡) −

2𝜋

3
𝑡 ∙ 𝑠𝑖𝑛 (

𝜋

3
𝑡)] 𝑈𝜌

⃗⃗ ⃗⃗ ⃗

+ [2 ∙ sin (
𝜋

3
𝑡) + 2 𝜃 ̇ 𝑡 ∙ 𝑐𝑜𝑠 (

𝜋

3
𝑡) +

2𝜋

3
𝑡 ∙ 𝑐𝑜𝑠 (

𝜋

3
𝑡)] 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

3. The expression for the acceleration vector (�⃗�) in terms of polar coordinates ρ and θ is 

developed through differentiation as follows: 

Initially, the acceleration is represented as: 

�⃗� =
𝑑2𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡2
=

𝑑2

𝑑𝑡2
(2𝑡 ∙ cos

𝜋

3
𝑡 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ sin
𝜋

3
𝑡 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

�⃗� =
𝑑2

𝑑𝑡2
(2𝑡 ∙ cos

𝜋

3
𝑡 𝑈𝜌

⃗⃗ ⃗⃗ ⃗) +
𝑑2

𝑑𝑡2
(2𝑡 ∙ sin

𝜋

3
𝑡 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

Expanding the differentiation according to the derivative rules and applying the given 

derivatives related to 𝑡 and the unit vectors, we derive: 

�⃗� =
𝑑2

𝑑𝑡2
(2𝑡) ∙ 𝑐𝑜𝑠 (

𝜋

3
𝑡) 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙
𝑑2

𝑑𝑡2
(𝑐𝑜𝑠 (

𝜋

3
𝑡)) 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ 𝑐𝑜𝑠 (
𝜋

3
𝑡)

𝑑2

𝑑𝑡2
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗)     

+
𝑑2

𝑑𝑡2
(2𝑡) ∙ sin (

𝜋

3
𝑡) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙
𝑑2

𝑑𝑡2
(𝑠𝑖𝑛 (

𝜋

3
𝑡)) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗  + 2𝑡 ∙ 𝑠𝑖𝑛 (
𝜋

3
𝑡)

𝑑2

𝑑𝑡2
(𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

Let's replace the given derivatives and relations involving the unit vectors into the 

previously derived expression for the acceleration vector (�⃗�) to simplify it accordingly. 

Given: 

𝑑2

𝑑𝑡2
(2𝑡) = 0 

𝑑2

𝑑𝑡2
(𝑐𝑜𝑠 (

𝜋

3
𝑡)) = − (

𝜋

3
)

2

𝑐𝑜𝑠 (
𝜋

3
𝑡) 

𝑑2

𝑑𝑡2
(𝑠𝑖𝑛 (

𝜋

3
𝑡)) = − (

𝜋

3
)

2

𝑠𝑖𝑛 (
𝜋

3
𝑡) 

𝑑2

𝑑𝑡2
(𝑈𝜌

⃗⃗ ⃗⃗ ⃗) = 𝜃 ̈ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ − �̇�2𝑈𝜌

⃗⃗ ⃗⃗ ⃗  and 
𝑑2

𝑑𝑡2
(𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = −𝜃 ̈ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + �̇�2𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

Now let's substitute these derivatives and relations into the expression for the acceleration 

vector (�⃗⃗�) to simplify it: 
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�⃗� = 2𝑡 ∙ (− (
𝜋

3
)

2

𝑐𝑜𝑠 (
𝜋

3
𝑡)) 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ 𝑐𝑜𝑠 (
𝜋

3
𝑡) ∙ (𝜃 ̈ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ − �̇�2𝑈𝜌
⃗⃗ ⃗⃗ ⃗)                                        

+ 2𝑡 ∙ (− (
𝜋

3
)

2

𝑠𝑖𝑛 (
𝜋

3
𝑡)) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 2𝑡 ∙ 𝑠𝑖𝑛 (
𝜋

3
𝑡) ∙ (−𝜃 ̈ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + �̇�2𝑈𝜃
⃗⃗ ⃗⃗ ⃗) 

The rearranged formula for the acceleration vector (�⃗�) becomes: 

�⃗� = − [2 𝜃 ̈ 𝑡 ∙ 𝑠𝑖𝑛 (
𝜋

3
𝑡) +  2𝑡 ∙ (

𝜋

3
)

2

∙ 𝑐𝑜𝑠 (
𝜋

3
𝑡) + 2 �̇�2 𝑡 ∙ 𝑐𝑜𝑠 (

𝜋

3
𝑡)] 𝑈𝜌

⃗⃗ ⃗⃗ ⃗

+ [2 𝜃 ̈ 𝑡 ∙ 𝑐𝑜𝑠 (
𝜋

3
𝑡) − 2𝑡 ∙ (

𝜋

3
)

2

𝑠𝑖𝑛 (
𝜋

3
𝑡) + 2 �̇�2 𝑡 ∙ 𝑠𝑖𝑛 (

𝜋

3
𝑡)] 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

C. Cylindrical coordinate systems 

Actually, the cylindrical coordinate system is an extension of the 2D polar coordinate 

system into 3D space. It involves specifying a point in space using three components 

(𝜌, 𝜃, 𝑧). The three components in cylindrical coordinates are: 

1. 𝜌: The radial distance from the z-axis to the point in the xy-plane. 

2. 𝜃: The angle measured counterclockwise from the 𝑥-axis to the projection of the 

point onto the (𝑥, 𝑦)-plane. 

3. 𝑧: The height or vertical position above (or below) the (𝑥, 𝑦)-plane. 

 

Within the cylindrical coordinate system, we can define position, velocity, and 

acceleration similar to other coordinate systems, though with some variations in terms of 

the variables used and their transformation. 
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✓ Position vector (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗)  

The position vector in cylindrical coordinates, (𝑂𝑀𝐶𝑦𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), is defined as the sum of the 

position vector in polar coordinates, (𝑂𝑀𝑃𝑜𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), and the vertical component (𝑧 �⃗⃗�). 

This can be described as: 

𝑂𝑀𝐶𝑦𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑂𝑀𝑃𝑜𝑙.

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑧 �⃗⃗� 

 In vector form, this relationship is written as: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜌 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + 𝑧 �⃗⃗� 

Where: 

• 𝜌: is the radial distance from the z-axis to the point in the (𝑥, 𝑦)-plane. 

• 𝑧: is the vertical position above (or below) the (𝑥, 𝑦)-plane. 

• 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ : is the unit vector in the radial direction. 

• �⃗⃗� ∶ is the unit vector in the vertical direction. 

So, the position vector in cylindrical coordinates can be expressed as the sum of the 

position vector in polar coordinates and the vertical component (𝑧 �⃗⃗�). 

✓ Velocity vector (�⃗⃗�) 

The velocity vector in cylindrical coordinates, denoted as (𝑉𝐶𝑦𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), is a combination of the 

velocity vector in polar coordinates, (𝑉𝑃𝑜𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), and the first derivative (rate of change) of 

the vertical component (�̇� �⃗⃗� ). 

𝑉𝐶𝑦𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝑑

𝑑𝑡
(𝑂𝑀𝐶𝑦𝑙.

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) =
𝑑

𝑑𝑡
[𝑂𝑀𝑃𝑜𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑧 �⃗⃗�] =

𝑑

𝑑𝑡
(𝑂𝑀𝑃𝑜𝑙.

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) + (
𝑑𝑧

𝑑𝑡
) �⃗⃗� 

 

The velocity in cylindrical coordinates can indeed be expressed as: 

𝑉𝐶𝑦𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑉𝑃𝑜𝑙.

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + �̇� �⃗⃗� 

With the representation of the velocity vector in polar coordinates as: 

 

 
𝑉𝑃𝑜𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = �̇� ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ �̇� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ 

(𝑽𝑷𝒐𝒍.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (�̇�) 
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The transformation to the velocity vector in cylindrical coordinates is accurately 

described as: 

𝑉𝐶𝑦𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = �̇� ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ �̇� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ + �̇� �⃗⃗� 

Where �̇�, �̇� and �̇� are the rates of change of 𝜌, 𝜃, and 𝑧 with respect to time, respectively. 

✓ Acceleration vector (�⃗�)  

The acceleration vector in cylindrical coordinates, denoted as (𝑎𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), is a combination of 

the acceleration vector in polar coordinates, (𝑎𝑃𝑜𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), and the second derivative (rate of 

change) of the vertical component (�̈� �⃗⃗� ). Two relationships can   

The calculation of the acceleration in cylindrical coordinates (𝑎𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) from position 

(𝑂𝑀𝐶𝑦𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) involves the second derivative of the position vector with respect to time. It's 

correctly derived as: 

𝑎𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
𝑑2

𝑑𝑡2
(𝑂𝑀𝐶𝑦𝑙.

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) =
𝑑2

𝑑𝑡2
[𝑂𝑀𝑃𝑜𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑧 �⃗⃗�] =

𝑑2

𝑑𝑡2
(𝑂𝑀𝑃𝑜𝑙.

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) + (
𝑑2𝑧

𝑑𝑡2
) �⃗⃗� 

 

The acceleration in cylindrical coordinates (𝑎𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) is also derived from the derivative of 

the velocity in cylindrical coordinates (𝑉𝐶𝑦𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗). It is accurately represented as: 

𝑎𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
𝑑

𝑑𝑡
(𝑉𝐶𝑦𝑙.

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
[𝑉𝑃𝑜𝑙.
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + �̇� �⃗⃗�] =

𝑑

𝑑𝑡
(𝑉𝑃𝑜𝑙.

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) + (
𝑑�̇�

𝑑𝑡
) �⃗⃗� 

 

The acceleration in cylindrical coordinates can indeed be expressed as: 

𝑎𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑎𝑃𝑜𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + �̈� �⃗⃗� 

With the representation of the velocity vector in polar coordinates as: 

The transformation to the acceleration vector in cylindrical coordinates is accurately 

described as: 

𝑎𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (�̈� − 𝜌 ∙ �̇�2) 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + (𝜌 ∙ �̈� + 2 𝜌 ∙̇ �̇�) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + �̈� �⃗⃗� 

𝑎𝑃𝑜𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (�̈� − 𝜌 ∙ �̇�2) 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + (𝜌 ∙ �̈� + 2 𝜌 ∙̇ �̇�) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

= (𝒂𝑷𝒐𝒍.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) = (�̈�) 

= (𝒂𝑷𝒐𝒍.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) = (�̈�) 


