
Chapter I                                                                                             Kinematics of a particle 

  

  26 | S e d r a t i  
 

Example 

A particle moves in cylindrical coordinates according to the following functions of time: 

𝜌(𝑡) = 2𝑡  

                      𝜃(𝑡) = 𝜔𝑡       (𝜔 = 𝑐𝑡𝑒) 

𝑧(𝑡) = 3𝑡2 

1. Find the velocity vector 𝑉 ⃗⃗⃗⃗ in cylindrical coordinates. 

2. Determine the speed (‖�⃗⃗�‖) of the particle as a function of time. 

3. Find the acceleration vector 𝑎 ⃗⃗⃗ ⃗ in cylindrical coordinates. 

4. Determine the magnitude of the acceleration ‖�⃗�‖ as a function of time. 

Solution 

1. Find the velocity 𝑉 ⃗⃗⃗⃗ :   

 

Given :  

�⃗⃗� = (
𝑑𝜌

𝑑𝑡
) ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 𝜌 ∙ (
𝑑𝑈𝜌

⃗⃗ ⃗⃗ ⃗

𝑑𝑡
) + (

𝑑𝑧

𝑑𝑡
) �⃗⃗� 

Knowing that:  

�̇� = (
𝑑𝜌

𝑑𝑡
) =

𝑑

𝑑𝑡
(2𝑡) = 2 𝑎𝑛𝑑 �̇� = (

𝑑𝑧

𝑑𝑡
) =

𝑑

𝑑𝑡
(3𝑡2) = 6𝑡  

 

And : 

 

 

Hence :  

 

2. Determining the speed (𝑉) (the magnitude of the velocity vector):  

 

 

Thus :  

 

3. Find the acceleration vector 𝑎 ⃗⃗⃗ ⃗:  

 

�⃗⃗� =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡
 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜌 ∙ 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + 𝑧�⃗⃗� ⇒ �⃗⃗� =

𝑑

𝑑𝑡
(𝜌 ∙ 𝑈𝜌

⃗⃗ ⃗⃗ ⃗ + 𝑧�⃗⃗�) 

�̇� =
𝑑𝜃

𝑑𝑡
=

𝑑

𝑑𝑡
(𝜔𝑡) = 𝜔 

(
𝑑𝑈𝜌

⃗⃗ ⃗⃗ ⃗

𝑑𝑡
) = 𝑈𝜌

⃗⃗ ⃗⃗ ⃗̇ = �̇�𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = 𝜔. 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

�⃗⃗� = 2 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + 2𝜔𝑡 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 6𝑡 �⃗⃗� 

‖�⃗⃗�‖ = √22 + (2𝜔𝑡)2 + (6𝑡)2 = √4 + 4𝜔2𝑡2 + 36𝑡2 = √4(𝜔2 + 9)𝑡2 + 4 

�⃗⃗� = 2√(𝜔2 + 9)𝑡2 + 1 

�⃗� =
𝑑�⃗⃗�

𝑑𝑡
=

𝑑2𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡2
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As expressed previously, the acceleration vector (�⃗�), in cylindrical coordinates, can be 

articulated as: 

Determining the values of �̇�, �̈�, �̇�, �̇�2, �̈� and �̈� permits the obtention of the final expression 

of the acceleration vector (�⃗�): 

Accordingly:  

Then :  

 

4. Determining the magnitude of the acceleration ‖�⃗�‖:  

 

 

D. Spherical Coordinate System: Spherical coordinates describe a point in 3𝐷 space 

using three values: radial distance (𝑟), polar angle (𝜃) and azimuthal angle (𝜑). It is 

particularly useful for describing points on the surface of a sphere. Here is a brief 

explanation of each coordinate: 

✓ Radial Distance (𝒓): This is the straight-line distance from the origin (the point 

(0,0,0)) to the point (𝑀) in space. It is sometimes denoted as (𝑟) and is always a 

non-negative value (𝑟 > 0). 

✓ Polar Angle (𝜽): Also known as the zenith angle, it represents the angle measured 

from the positive 𝑧-axis to the line segment connecting the origin to the point. The 

�⃗� = (�̈� − 𝜌 ∙ �̇�2) 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + (𝜌 ∙ �̈� + 2 𝜌 ∙̇ �̇�) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + �̈��⃗⃗� 

�̇� =
𝑑𝜌

𝑑𝑡
=

𝑑

𝑑𝑡
(2𝑡) = 2 ⇒ �̈� =

𝑑2𝜌

𝑑𝑡2
=

𝑑�̇�

𝑑𝑡
=

𝑑

𝑑𝑡
(2) = 0 

�̇� =
𝑑𝜃

𝑑𝑡
=

𝑑

𝑑𝑡
(𝜔𝑡) = 𝜔 ⇒ �̈� =

𝑑2𝜃

𝑑𝑡2
=

𝑑�̇�

𝑑𝑡
=

𝑑

𝑑𝑡
(𝜔) = 0 

�̇�2 = (𝜔)2 = 𝜔2 

�̇� =
𝑑𝑧

𝑑𝑡
=

𝑑

𝑑𝑡
(3𝑡2) = 6𝑡 ⇒ �̈� =

𝑑2𝑧

𝑑𝑡2
=

𝑑�̇�

𝑑𝑡
=

𝑑

𝑑𝑡
(6𝑡) = 6 

 

�⃗� = (0 − (2𝑡) ∙ (𝜔)2) 𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + ((2𝑡) ∙ 0 + 2 ∙ 2 ∙ 𝜔) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 6 �⃗⃗� 

�⃗� = −2𝑡𝜔2 ∙  𝑈𝜌
⃗⃗ ⃗⃗ ⃗ + 4𝜔 ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 6 �⃗⃗� 

𝑎 = ‖�⃗�‖ = √(2𝜔2𝑡)2 + (4𝜔)2 + (6)2 = √4𝜔4𝑡2 + 16𝜔2 + 36 
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polar angle is usually measured in radians and ranges from 0 to π radians (180 

degrees). 

Azimuthal Angle (𝝋): Also known as the azimuth angle or the azimuth, this angle is 

measured in the 𝑥𝑦-plane from the positive 𝑥-axis to the projection of the line segment 

onto the 𝑥𝑦-plane. The azimuthal angle is usually measured in radians and can range from 

0 to 2π radians (360 degrees). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The conversion between Cartesian coordinates (𝑥, 𝑦, 𝑧) and spherical coordinates 

(𝑟, 𝜃, 𝜑) is given by the following equations: 

Cartesian to Spherical  Spherical to Cartesian Interval of variation 

𝑋 = 𝑟 ∙ sin 𝜃 ∙ cos 𝜑 𝑟 = √𝑋2 + 𝑌2 + 𝑍2 𝑟 ∈ [0, +∞[ 

𝑌 = 𝑟 ∙ sin 𝜃 ∙ sin 𝜑 tan 𝜑 =
𝑌

𝑋
 0 ≤ 𝜑 ≤ 2𝜋 

𝑍 = 𝑟 ∙ cos 𝜃 cos 𝜃 =
𝑍

√𝑋2 + 𝑌2 + 𝑍2
 0 ≤ 𝜃 ≤ 𝜋 
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Unit vectors (𝑈𝑟
⃗⃗⃗⃗⃗, 𝑈𝜑

⃗⃗⃗⃗⃗⃗ , 𝑈𝜃
⃗⃗ ⃗⃗ ⃗) in spherical coordinates can be defined as follows: 

• Radial Unit Vector (𝑼𝒓
⃗⃗ ⃗⃗ ⃗): 

The radial unit vector points in the direction of increasing radial distance (𝑟) and 

is represented and given as follows: 

𝑈𝑟
⃗⃗⃗⃗⃗ = sin 𝜃 ∙ cos 𝜑  𝑖 + sin 𝜃 ∙ sin 𝜑  𝑗 + cos 𝜃  �⃗⃗� 

 

 

• Azimuthal Unit Vector (𝑼𝝋
⃗⃗ ⃗⃗ ⃗⃗ ): 

The azimuthal unit vector points in the direction of increasing azimuthal angle 

(𝜑) and is represented and given as follows: 

 

 

𝑈𝜑
⃗⃗⃗⃗⃗⃗ = − sin 𝜑  𝑖 + cos 𝜑  𝑗 
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• Polar Unit Vector (𝑼𝜽
⃗⃗⃗⃗⃗⃗ ): 

The polar unit vector points in the direction of increasing polar angle (𝜃). To find  

its expression, we apply the cross product (vector product) between the radial unit  

vector ( 𝑈𝑟
⃗⃗ ⃗⃗ ⃗⃗ ) and the azimuthal unit vector ( 𝑈𝜑

⃗⃗ ⃗⃗ ⃗⃗ ⃗) as follows: 

𝑈𝜃
⃗⃗ ⃗⃗ ⃗ =  𝑈𝜑

⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∧ 𝑈𝑟
⃗⃗⃗⃗⃗ = |

𝑖 𝑗 �⃗⃗�
− 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 0

𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 ∙ 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃

| 

𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = (𝑐𝑜𝑠 𝜑 ∙ 𝑐𝑜𝑠 𝜃 − (𝑠𝑖𝑛 𝜃 ∙ 𝑠𝑖𝑛 𝜑) × 0) 𝑖

− ((− 𝑠𝑖𝑛 𝜑) ∙ 𝑐𝑜𝑠 𝜃 − (𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜑) × 0) 𝑗

+ ((− 𝑠𝑖𝑛 𝜑) × 𝑠𝑖𝑛 𝜃 ∙ 𝑠𝑖𝑛 𝜑 − 𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜑 × 𝑐𝑜𝑠 𝜑) �⃗⃗� 

𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = 𝑐𝑜𝑠 𝜑 ∙ 𝑐𝑜𝑠 𝜃  𝑖 + 𝑠𝑖𝑛 𝜑 ∙ 𝑐𝑜𝑠 𝜃  𝑗 − 𝑠𝑖𝑛 𝜃 (𝑐𝑜𝑠2 𝜑 + 𝑠𝑖𝑛2 𝜑) �⃗⃗� 

 

 

Hence:  

 

 

  

 

 

 

 

✓ Position vector (𝑶𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ) 

The position vector (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗) in Cartesian coordinates is given as: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑋 𝑖 + 𝑌  𝑗 + 𝑍 �⃗⃗� 

Substituting the expressions of X, Y and Z in the last formula then the spherical 

coordinates of the position vector (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗) will be given by: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑟 ∙ sin 𝜃 ∙ cos 𝜑 𝑖 + 𝑟 ∙ sin 𝜃 ∙ sin 𝜑  𝑗 + 𝑟 ∙ cos 𝜃  �⃗⃗� 

Here, (𝑟) is the radial distance, (𝜃) is the polar angle (angle from the positive z-axis), and 

(𝜑) is the azimuthal angle (angle in the xy-plane from the positive x-axis). 

𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = 𝑐𝑜𝑠 𝜑 ∙ 𝑐𝑜𝑠 𝜃  𝑖 + 𝑠𝑖𝑛 𝜑 ∙ 𝑐𝑜𝑠 𝜃  𝑗 − 𝑠𝑖𝑛 𝜃  �⃗⃗� 

 

Positive Cross product Negative Cross product 

 𝑈𝜑
⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∧ 𝑈𝑟

⃗⃗⃗⃗⃗ = 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ 𝑈𝑟

⃗⃗⃗⃗⃗ ∧ 𝑈𝜑
⃗⃗⃗⃗⃗⃗ = − 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

𝑈𝑟
⃗⃗⃗⃗⃗ ∧ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ = 𝑈𝜑
⃗⃗⃗⃗⃗⃗  𝑈𝜃

⃗⃗ ⃗⃗ ⃗ ∧ 𝑈𝑟
⃗⃗⃗⃗⃗ = − 𝑈𝜑

⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

𝑈𝜃
⃗⃗ ⃗⃗ ⃗ ∧ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ = 𝑈𝑟
⃗⃗⃗⃗⃗ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ ∧ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ = − 𝑈𝑟

⃗⃗⃗⃗⃗ 

= 𝟏 
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 As we can see, the radial distance (r) is the common factor in the expression of the 

position vector. In other word, the position vector in spherical coordinates can be written 

as follows: 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑟 ∙ (sin 𝜃 ∙ cos 𝜑 𝑖 + sin 𝜃 ∙ sin 𝜑  𝑗 + cos 𝜃  �⃗⃗�) 

Given that : 

𝑈𝑟
⃗⃗⃗⃗⃗ = sin 𝜃 ∙ cos 𝜑  𝑖 + sin 𝜃 ∙ sin 𝜑  𝑗 + cos 𝜃  �⃗⃗� 

Hence,  

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑟 𝑈𝑟
⃗⃗⃗⃗⃗ 

✓ Velocity vector (�⃗⃗⃗�) 

In spherical coordinates, the velocity vector is given as follows:  

�⃗⃗� =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡
=  

𝑑

𝑑𝑡
(𝑟𝑈𝑟

⃗⃗⃗⃗⃗) = (
𝑑𝑟

𝑑𝑡
) �⃗⃗⃗�𝑟 + 𝑟 ∙

𝑑𝑈𝑟
⃗⃗⃗⃗⃗

𝑑𝑡
 

Developing this expression leads to: 

�⃗⃗� = 𝑟 ̇ �⃗⃗⃗�𝑟 + 𝑟 ∙
𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜑  𝑖 + 𝑠𝑖𝑛 𝜃 ∙ 𝑠𝑖𝑛 𝜑 𝑗 + 𝑐𝑜𝑠 𝜃  �⃗⃗�) 

And: 

�⃗⃗� = 𝑟 ̇ �⃗⃗⃗�𝑟 + 𝑟 ∙ [(
𝑑

𝑑𝑡
(sin 𝜃) ∙ 𝑐𝑜𝑠 𝜑 + 𝑠𝑖𝑛 𝜃 ∙

𝑑

𝑑𝑡
(cos 𝜑)) 𝑖

+ (
𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃) ∙ 𝑠𝑖𝑛 𝜑 +  𝑠𝑖𝑛 𝜃 ∙

𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜑)) 𝑗 +

𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜃) �⃗⃗�] 

Also, 

�⃗⃗� = 𝑟 ̇ �⃗⃗⃗�𝑟 + 𝑟 ∙ [(�̇� ∙ cos 𝜃 ∙ 𝑐𝑜𝑠 𝜑 + 𝑠𝑖𝑛 𝜃 ∙ (�̇�(− sin 𝜑))) 𝑖

+ (�̇� ∙ 𝑐𝑜𝑠 𝜃 ∙ 𝑠𝑖𝑛 𝜑 +  𝑠𝑖𝑛 𝜃 ∙ (�̇� cos 𝜑)) 𝑗 + �̇�(− 𝑠𝑖𝑛 𝜃) �⃗⃗�] 

Simplifying this expression leads to: 

�⃗⃗� = 𝑟 ̇ �⃗⃗⃗�𝑟 + 𝑟 ∙ [(�̇� ∙ cos 𝜃 ∙ 𝑐𝑜𝑠 𝜑  −�̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ sin 𝜑) �⃗⃗�

+ (�̇� ∙ 𝑐𝑜𝑠 𝜃 ∙ 𝑠𝑖𝑛 𝜑 +  𝜑 ∙̇ 𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜑) 𝑗 − �̇�  sin 𝜃  �⃗⃗�] 
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Rearranging the last we obtain: 

�⃗⃗� = 𝑟 ̇ �⃗⃗⃗�𝑟 + 𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ (− 𝑠𝑖𝑛 𝜑 𝑖 + 𝑐𝑜𝑠 𝜑 𝑗) 

 

+ 𝑟 ∙ �̇� ∙ (𝑐𝑜𝑠 𝜃 ∙ 𝑐𝑜𝑠 𝜑   �⃗⃗� + 𝑐𝑜𝑠 𝜃 ∙ 𝑠𝑖𝑛 𝜑 𝑗  − 𝑠𝑖𝑛 𝜃  �⃗⃗�) 

At the end: 

�⃗⃗� = 𝑟 ̇ �⃗⃗⃗�𝑟 + 𝑟 ∙ �̇� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ + 𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗   

Therefore, the components of the velocity vector (�⃗⃗�) are: 

𝑉𝑟 = �̇�                      

𝑉𝜃 = 𝑟 ∙ �̇�               

𝑉𝜑 = 𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 

These components represent the radial, polar, and azimuthal components of the velocity 

vector in spherical coordinates, respectively. 

✓ Acceleration vector (�⃗⃗⃗�) 

The acceleration vector in spherical coordinates is expressed as follows: 

�⃗� =
𝑑2𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑑𝑡2
=  

𝑑2

𝑑𝑡2
(𝑟𝑈𝑟

⃗⃗⃗⃗⃗) = (
𝑑2𝑟

𝑑𝑡2
) �⃗⃗⃗�𝑟 + 𝑟 ∙

𝑑2𝑈𝑟
⃗⃗⃗⃗⃗

𝑑𝑡2
 

Or recall the expression for the velocity vector and differentiate it with respect to time: 

 

 

Distributing the derivation gave the following expression: 

 

 

Let's differentiate each term separately: 

➢ First term:  

𝑑

𝑑𝑡
(𝑟 ̇ �⃗⃗⃗�𝑟) =

𝑑

𝑑𝑡
(𝑟 ̇ ) ∙ �⃗⃗⃗�𝑟 + �̇� ∙

𝑑

𝑑𝑡
(�⃗⃗⃗�𝑟) 

𝑑

𝑑𝑡
(𝑟 ̇ �⃗⃗⃗�𝑟) = �̈� ∙ �⃗⃗⃗�𝑟 + �̇� ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 𝑈𝜑

⃗⃗⃗⃗⃗⃗ + �̇� ∙ �̇� 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ 

�⃗� =
𝑑�⃗⃗�

𝑑𝑡
=  

𝑑

𝑑𝑡
(𝑟 ̇ �⃗⃗⃗�𝑟 + 𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ +  𝑟 ∙ �̇� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗) 

�⃗� =  
𝑑

𝑑𝑡
(𝑟 ̇ �⃗⃗⃗�𝑟) +

𝑑

𝑑𝑡
(𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ ) +
𝑑

𝑑𝑡
 (𝑟 ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

= 𝑼𝝋
⃗⃗ ⃗⃗ ⃗⃗  

= 𝑼𝜽
⃗⃗⃗⃗⃗⃗  
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➢ Second term: 

Let’s expand the last term: 

 

 

Now substitute this back into the expression of the second term: 

Moreover: 

As we can see, cartesian unit vectors 𝑖 and 𝑗 appear in the back expression. So, to express 

them in terms of spherical coordinates, we can use the inverse of the following orthogonal 

matrix: 

(

𝑈𝑟
⃗⃗⃗⃗⃗

𝑈𝜃
⃗⃗ ⃗⃗ ⃗

𝑈𝜑
⃗⃗⃗⃗⃗⃗

) = (

𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 ∙ 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃
𝑐𝑜𝑠 𝜑 ∙ 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑 ∙ 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃

−sin 𝜑 cos 𝜑 0
) × (

𝑖
𝑗

�⃗⃗�

) 

The inverse of this matrix is expressed as follows: 

(

𝑖
𝑗

�⃗⃗�

) = (
𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃 ∙ 𝑐𝑜𝑠 𝜑 −𝑠𝑖𝑛 𝜑
𝑠𝑖𝑛 𝜃 ∙ 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 ∙ 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑

𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0

) × (

𝑈𝑟
⃗⃗⃗⃗⃗

𝑈𝜃
⃗⃗ ⃗⃗ ⃗

𝑈𝜑
⃗⃗⃗⃗⃗⃗

) 

As a consequence: 

𝑖 = 𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜑  𝑈𝑟
⃗⃗⃗⃗⃗ + 𝑐𝑜𝑠 𝜃 ∙ 𝑐𝑜𝑠 𝜑  𝑈𝜃

⃗⃗ ⃗⃗ ⃗ − 𝑠𝑖𝑛 𝜑 𝑈𝜑
⃗⃗⃗⃗⃗⃗  

𝑗 = 𝑠𝑖𝑛 𝜃 ∙ 𝑠𝑖𝑛 𝜑  𝑈𝑟
⃗⃗⃗⃗⃗ + 𝑐𝑜𝑠 𝜃 ∙ 𝑠𝑖𝑛 𝜑  𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝑐𝑜𝑠 𝜑  𝑈𝜑
⃗⃗⃗⃗⃗⃗  

�⃗⃗� = 𝑐𝑜𝑠 𝜃  𝑈𝑟
⃗⃗⃗⃗⃗ − 𝑠𝑖𝑛 𝜃  𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

𝑑

𝑑𝑡
(𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ ) =
𝑑

𝑑𝑡
(𝑟) ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ + 𝑟 ∙
𝑑

𝑑𝑡
(�̇�) ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗  

+𝑟 ∙ �̇� ∙
𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃) ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ + 𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙
𝑑

𝑑𝑡
(𝑈𝜑

⃗⃗⃗⃗⃗⃗ ) 

𝑑

𝑑𝑡
(𝑈𝜑

⃗⃗⃗⃗⃗⃗ ) =
𝑑

𝑑𝑡
 (− 𝑠𝑖𝑛 𝜑  𝑖 + 𝑐𝑜𝑠 𝜑  𝑗) = −�̇� ∙ (cos 𝜑  𝑖 + sin 𝜑  𝑗) 

𝑑

𝑑𝑡
(𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ ) = �̇� ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑
⃗⃗⃗⃗⃗⃗ + 𝑟 ∙ �̈� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗  

+ 𝑟 ∙ �̇� ∙ (�̇� ∙ cos 𝜃) ∙ 𝑈𝜑
⃗⃗⃗⃗⃗⃗ + 𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ (−𝜑 ∙̇ (cos 𝜑 𝑖 + sin 𝜑 𝑗)) 

𝑑

𝑑𝑡
(𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ ) = (�̇� ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 + 𝑟 ∙ �̈� ∙ 𝑠𝑖𝑛 𝜃 +  𝑟 ∙ �̇� ∙ �̇� ∙ 𝑐𝑜𝑠 𝜃) 𝑈𝜑
⃗⃗⃗⃗⃗⃗  

− 𝑟 ∙ �̇�2 ∙ 𝑠𝑖𝑛 𝜃 ∙ (cos 𝜑 𝑖 + sin 𝜑 𝑗) 
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Now, let’s replace 𝑖 and 𝑗 in the expression second term 

➢ Third term: 

Starting from the expression: 

 

 

This term can be expressed as follows:  

𝑑

𝑑𝑡
 (𝑟 ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = �̇� ∙ �̇� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ + 𝑟 ∙ �̈� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝑟 ∙ �̇� ∙
𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 

Let’s develop the differentiation of the polar unit vector (𝑈𝜃
⃗⃗ ⃗⃗ ⃗) with respect to time: 

𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜑 ∙ 𝑐𝑜𝑠 𝜃  𝑖 + 𝑠𝑖𝑛 𝜑 ∙ 𝑐𝑜𝑠 𝜃  𝑗 − 𝑠𝑖𝑛 𝜃  �⃗⃗�) 

𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜑 ∙ 𝑐𝑜𝑠 𝜃) 𝑖 +

𝑑

𝑑𝑡
 (sin 𝜑 ∙ 𝑐𝑜𝑠 𝜃) 𝑗 −

𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃) �⃗⃗� 

Now, let’s distribute the differentiation: 

𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = [
𝑑

𝑑𝑡
(𝑐𝑜𝑠 𝜑) ∙ 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 ∙

𝑑

𝑑𝑡
(cos 𝜃)] 𝑖

+ [
𝑑

𝑑𝑡
 (sin 𝜑) ∙ 𝑐𝑜𝑠 𝜃 + 𝑠𝑖𝑛 𝜑 ∙

𝑑

𝑑𝑡
(cos 𝜃)] 𝑗 −

𝑑

𝑑𝑡
(𝑠𝑖𝑛 𝜃) �⃗⃗� 

So, the complete expression for 
𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) is: 

𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = [(−�̇� ∙ sin 𝜑) ∙ 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 ∙ (−�̇� ∙ sin 𝜃)] 𝑖

+ [�̇� ∙ cos 𝜑 ∙ 𝑐𝑜𝑠 𝜃 + 𝑠𝑖𝑛 𝜑 ∙ (−�̇� ∙ 𝑠𝑖𝑛 𝜃)] 𝑗 − �̇� ∙ cos 𝜃  �⃗⃗� 

Now, let's simplify further: 

𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = [−�̇� ∙ 𝑠𝑖𝑛 𝜑 ∙ 𝑐𝑜𝑠 𝜃 − �̇� ∙ 𝑐𝑜𝑠 𝜑 ∙ 𝑠𝑖𝑛 𝜃] 𝑖

+ [�̇� ∙ cos 𝜑 ∙ 𝑐𝑜𝑠 𝜃 − �̇� ∙ 𝑠𝑖𝑛 𝜑 ∙ 𝑠𝑖𝑛 𝜃] 𝑗 − �̇� ∙ cos 𝜃  �⃗⃗� 

𝑑

𝑑𝑡
(𝑟 ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑈𝜑

⃗⃗⃗⃗⃗⃗ ) = − 𝑟 ∙ �̇�2 ∙ sin2 𝜃  𝑈𝑟
⃗⃗⃗⃗⃗  −  𝑟 ∙ �̇�2 ∙ 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃  𝑈𝜃

⃗⃗ ⃗⃗ ⃗  

                                               + (�̇� ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 + 𝑟 ∙ �̈� ∙ 𝑠𝑖𝑛 𝜃 +  𝑟 ∙ �̇� ∙ �̇� ∙ 𝑐𝑜𝑠 𝜃) 𝑈𝜑
⃗⃗⃗⃗⃗⃗   

𝑑

𝑑𝑡
 (𝑟 ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) =
𝑑

𝑑𝑡
 (𝑟) ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝑟 ∙
𝑑

𝑑𝑡
 (�̇�) ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝑟 ∙ �̇� ∙
𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) 
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Rearranging the last expression leads to: 

𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃 ∙ (− 𝑠𝑖𝑛 𝜑  𝑖 + 𝑐𝑜𝑠 𝜑  𝑗) 

+ �̇� ∙ (𝑐𝑜𝑠 𝜑 ∙ 𝑠𝑖𝑛 𝜃  𝑖 + 𝑠𝑖𝑛 𝜑 ∙ 𝑠𝑖𝑛 𝜃  𝑗 + 𝑐𝑜𝑠 𝜃  �⃗⃗�) 

At the end the differentiation of the polar unit vector (𝑈𝜃
⃗⃗ ⃗⃗ ⃗) is articulated as follows 

𝑑

𝑑𝑡
 (𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃 𝑈𝜑
⃗⃗⃗⃗⃗⃗ +  �̇� ∙ 𝑈𝑟

⃗⃗⃗⃗⃗ 

Now let’s replace this back in the expression of the third term:  

Now, let's simplify moreover: 

After being rearranged, the third term becomes: 

 

 

The addition of the three terms lead to the determination of the acceleration expression: 

The rearranging of this expression lead to the formula of the acceleration vector (�⃗�) in 

spherical coordinates: 

Therefore, the components of the acceleration vector (�⃗�) are: 

𝑎𝑟 = �̈� −  𝑟 ∙ �̇�2 −  𝑟 ∙ �̇�2 ∙ 𝑠𝑖𝑛2 𝜃                                          

𝑎𝜃 = 𝑟 ∙ �̈� + 2 �̇� ∙ �̇� −  𝑟 ∙ �̇�2 ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜃                        

𝑎𝜑 = 𝑟 ∙ �̈� ∙ 𝑠𝑖𝑛 𝜃 + 2 �̇� ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 + 2 𝑟 ∙ �̇� ∙ 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃  

𝑑

𝑑𝑡
 (𝑟 ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = �̇� ∙ �̇� ∙ 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ + 𝑟 ∙ �̈� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝑟 ∙ �̇� ∙ 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃 𝑈𝜑
⃗⃗⃗⃗⃗⃗ +  𝑟 ∙ �̇�2 ∙ 𝑈𝑟

⃗⃗⃗⃗⃗ 

𝑑

𝑑𝑡
 (𝑟 ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = 𝑟 ∙ �̇�2 ∙ 𝑈𝑟
⃗⃗⃗⃗⃗ + (�̇� ∙ �̇� + 𝑟 ∙ �̈�) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ + 𝑟 ∙ �̇� ∙ 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃 𝑈𝜑
⃗⃗⃗⃗⃗⃗  

𝑑

𝑑𝑡
 (𝑟 ∙ �̇� ∙ 𝑈𝜃

⃗⃗ ⃗⃗ ⃗) = − 𝑟 ∙ �̇�2 𝑈𝑟
⃗⃗⃗⃗⃗ + 𝑟 ∙ �̇� ∙ 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃 𝑈𝜑

⃗⃗⃗⃗⃗⃗ + (�̇� ∙ �̇� + 𝑟 ∙ �̈�) 𝑈𝜃
⃗⃗ ⃗⃗ ⃗ 

�⃗� =  �̈� ∙ �⃗⃗⃗�𝑟 + �̇� ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 𝑈𝜑
⃗⃗⃗⃗⃗⃗ + �̇� ∙ �̇� 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ −  𝑟 ∙ �̇�2 ∙ 𝑠𝑖𝑛2 𝜃  𝑈𝑟
⃗⃗⃗⃗⃗  −  𝑟 ∙ �̇�2 ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜃  𝑈𝜃

⃗⃗ ⃗⃗ ⃗  

+  (�̇� ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 + 𝑟 ∙ �̈� ∙ 𝑠𝑖𝑛 𝜃 +  𝑟 ∙ �̇� ∙ 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃) 𝑈𝜑
⃗⃗⃗⃗⃗⃗  −  𝑟 ∙ �̇�2 𝑈𝑟

⃗⃗⃗⃗⃗ 

+𝑟 ∙ �̇� ∙ 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃 𝑈𝜑
⃗⃗⃗⃗⃗⃗ + (�̇� ∙ �̇� + 𝑟 ∙ �̈�) 𝑈𝜃

⃗⃗ ⃗⃗ ⃗ 

�⃗� =  (�̈� −  𝑟 ∙ �̇�2 −  𝑟 ∙ �̇�2 ∙ 𝑠𝑖𝑛2 𝜃 ) �⃗⃗⃗�𝑟 + (𝑟 ∙ �̈� + 2 �̇� ∙ �̇� −  𝑟 ∙ �̇�2 ∙ 𝑠𝑖𝑛 𝜃 ∙ 𝑐𝑜𝑠 𝜃) 𝑈𝜃
⃗⃗ ⃗⃗ ⃗   

+ (𝑟 ∙ �̈� ∙ 𝑠𝑖𝑛 𝜃 + 2 �̇� ∙ �̇� ∙ 𝑠𝑖𝑛 𝜃 + 2 𝑟 ∙ �̇� ∙ 𝜑 ∙̇ 𝑐𝑜𝑠 𝜃) 𝑈𝜑
⃗⃗⃗⃗⃗⃗   

= 𝑼𝝋
⃗⃗ ⃗⃗ ⃗⃗  

= 𝑼𝒓
⃗⃗ ⃗⃗ ⃗ 


