Chapter 1 Kinematics of a particle

Example

A particle moves in cylindrical coordinates according to the following functions of time:

p(t) =2t
0(t) =wt (w=cte)
z(t) = 3t?

1. Find the velocity vector Vin cylindrical coordinates.
2. Determine the speed (”17”) of the particle as a function of time.

3. Find the acceleration vector @ in cylindrical coordinates.

4. Determine the magnitude of the acceleration ||d|| as a function of time.

Solution .
1. Find the velocity V' : V= —
-2 —_— - — d N N
Given : 0M=p'Up+Zk=>V=E(p'Up+Zk)

V’—(dp) U, + 40, +(dz)E
~\ag) P TP t dt

Knowing that:
dp d dz d
P (dt) gt 2D =2andz=(gp) = 77 319
dé d
And : Gzaza(wt):w
de) e e P
_t =Up=9U9=(l) Ug
Hence : I7=27p)+2wt79)+6tﬁ

2. Determining the speed (V) (the magnitude of the velocity vector):

IVl = V22 + Qut)? + (6£)% = V4 + 4w?t? + 3612 = \[4(w? + 9)22 + 4

Thus : V= 2\/(0)2 +9)t2+1
: . % . dV _d*OM
3. Find the acceleration vector a : a= I dez
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Chapter 1 Kinematics of a particle

As expressed previously, the acceleration vector (@), in cylindrical coordinates, can be

articulated as:
i=p-p-0)U,+(p-6+2p:0)Ty + 2k

Determining the values of p, g, 8, 62, 8 and Z permits the obtention of the final expression

of the acceleration vector (a):

. _dp d . d*p dp d
Par = a =22 = =g =@ =0
é_de_d(t)_ :>9._d29_dé_d()_0
“dar ad T Tdez dr dat T
6? = (w)? = w?

dz d d’z dz d
A — 2y = 7 = — = — =
Z_dt dt(Bt) 6t = Z FTEiRT, dt(6t) 6

Accordingly:
i=0-2t) @HU,+(2)-0+2-2-w) Uy +6k

Then :

a=—2tw?- Up)+4a)-U_9)+6E

4. Determining the magnitude of the acceleration ||d||:

a = |ldll = J/Qw?t)? + (4w)? + (6)% = /4w*t? + 16w? + 36

D. Spherical Coordinate System: Spherical coordinates describe a point in 3D space
using three values: radial distance (7), polar angle (8) and azimuthal angle (¢). It is
particularly useful for describing points on the surface of a sphere. Here is a brief

explanation of each coordinate:
v Radial Distance (7): This is the straight-line distance from the origin (the point

(0,0,0)) to the point (M) in space. It is sometimes denoted as () and is always a

non-negative value (r > 0).
v Polar Angle (0): Also known as the zenith angle, it represents the angle measured

from the positive z-axis to the line segment connecting the origin to the point. The
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Chapter 1 Kinematics of a particle

polar angle is usually measured in radians and ranges from O to m radians (180
degrees).
Azimuthal Angle (@): Also known as the azimuth angle or the azimuth, this angle is
measured in the xy-plane from the positive x-axis to the projection of the line segment
onto the xy-plane. The azimuthal angle is usually measured in radians and can range from

0 to 2x radians (360 degrees).
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Y=r-sin@-cos¢

Y=p-sing

The conversion between Cartesian coordinates (x,Yy,z) and spherical coordinates

(1, 8, @) is given by the following equations:

Cartesian to Spherical | Spherical to Cartesian Interval of variation
X=r-sinf-cosQ |r=X2+Y2+22 r € [0, 400
Y
Y =7r-sinf -sing tangozi 0<¢p<2m
Z
Z =r-cosf cosf = 0<6<nm
VX2 + Y2 + 72
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Chapter 1 Kinematics of a particle

Unit vectors (Ur), U_q;, U_9>) in spherical coordinates can be defined as follows:

¢ Radial Unit Vector (Fr)):
The radial unit vector points in the direction of increasing radial distance () and

1s represented and given as follows:

U, =sin@-cosg {+sinf-sing ]+ cosO k

U,

! /‘”ﬁr” -sin@ - sing

: P >
ST Y

7’
'

e Azimuthal Unit Vector (U_q;):

The azimuthal unit vector points in the direction of increasing azimuthal angle

(¢) and is represented and given as follows:

—

Uy,=—sing T+ cosg j

v

— e e e e e e e, e e -

- . X=p-cose
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Chapter 1 Kinematics of a particle

e Polar Unit Vector (U—g)):
The polar unit vector points in the direction of increasing polar angle (8). To find
its expression, we apply the cross product (vector product) between the radial unit
vector (7,:) and the azimuthal unit vector (74;) as follows:
i Ji k
Upg= U, AU, =| —sing cos @ 0
sinf-cosq@ sin@-sing cos0
79) = (cos@-cosO — (sinf -sinp) X 0) T
— ((—sing) - cos@ — (sin@ - cos p) x 0) J

+((—sin<p) XSinH-singo—SinB-cos<p><cos<p)l_€

—

Ug =cosq@-cosB T+ sing - cosH j’—sin@(‘cosz<p+sin2<p’)ﬁ
Y
=1

—_—

Hence: Ug=cos<p-cos€i’+sin<p-cos€j’—sin9E

Positive Cross product Negative Cross product

FT) - —_— — —_— — —_— —

1’;\\# U, AU, = Ug U, AU, =—Ug
- + U‘p .

-/

\/

AT, =T, Uy nT; = T,

— _— = =

Uy AU, =T, U, AUy =—TU,

v Position vector (W)

The position vector (071) in Cartesian coordinates is given as:

OM=XT+Y J+7Zk

Substituting the expressions of X, ¥ and Z in the last formula then the spherical
coordinates of the position vector (0—1\2) will be given by:

OM =r-sinf-cos@i+r-sinf-sing J+7r-cos k

Here, (r) is the radial distance, (@) is the polar angle (angle from the positive z-axis), and
() is the azimuthal angle (angle in the xy-plane from the positive x-axis).
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Chapter 1 Kinematics of a particle

As we can see, the radial distance (r) is the common factor in the expression of the

position vector. In other word, the position vector in spherical coordinates can be written

as follows:
OM=r- (sinf-cospi+sinf sing j+ cosf l_c))
Given that :
U, =sinf-cosg {+sinf-sing ]+ cosO k
Hence,

v Velocity vector (V)

In spherical coordinates, the velocity vector is given as follows:

v_dT_d(i)_(dr)ﬁ+ dU,
“Tar oy o T \a) T Tae

Developing this expression leads to:
g . - d . - . . - -
V =7rU, +r-a(sm9-cos<p L+ sin@-sing j+ cosB k)
And:

l7=7‘(1+r-

d . , d ,
(E (sin@) - cos @ + sinb E(cos go))t
+d('9)' +'9d(' )*+d 0) k
It sin sing + sin It sing) |J It (cos 0)

Also,
V=rU +r- [(9 *cosf-cosq@+ sinb - (gb(—sin(p)))i’

+ (9 -cos B -sing + sin6- (¢ cosgo))f+ 6(—sin6) E]

Simplifying this expression leads to:
V= fﬁr +7r- [(é-cose-cosgo —<p-sin9-sin(p)_i

+(9-cos€-sin<p+ qi-sin@-cosq))f—é sinf l_c)]
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Chapter 1 Kinematics of a particle

Rearranging the last we obtain:

I7)=fl7r+r-gb-sin9-§—sin(pi’+ cosgoj?
L—)

U,

+r-9-(cos€-cos<p T+ cos@-sing j —sinb l_c;)

—
— UB
At the end:

I7=fU)r+r-9-79)+r-¢-Sin9-U_¢)

Therefore, the components of the velocity vector (I_/)) are:

V=1
V9=T'9
Vo=r-¢-sint

These components represent the radial, polar, and azimuthal components of the velocity

vector in spherical coordinates, respectively.

v’ Acceleration vector (a)

The acceleration vector in spherical coordinates is expressed as follows:
d?oM  d* , _. d2r\ dU,
T Az dt? (r0r) = Urtr: dt?

Or recall the expression for the velocity vector and differentiate it with respect to time:
dv

- d -4 . . g S T
a=E= E(TUr+T'(p'Sln9'U(p+ r-9-U9)

dt?

Q

Distributing the derivation gave the following expression:

a= a(rUr)+E(r-go-sm9-U(p)+E (T'H'Ug)
Let's differentiate each term separately:

> First term:
d , - d . 5 od o
a(TUT)=a(T)'Ur+T'%(Ur)
d, . - Lo — e
a(rUr)=r-Ur+r-<p-sin9U<p+r-9U9
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Chapter 1 Kinematics of a particle
» Second term:
E(rwp-sm@ . U(p) =%(r)-<p-sm9 Uy, +r-a(<p)-5m9 Uy,
cd — . d —
+r-@ -%(sme) Uy +1-¢-sind -E(U(p)

Let’s expand the last term:

d . d
T U,) = (—sinp T+cosp J)=—¢ - (cosp T+sing J)

Now substitute this back into the expression of the second term:
d LN L L
a(rwp-sm@-Uq,)=r-<p-sm8-Uq,+r-(p-Sm9-U(p
+r-<p-(9-c059)-U_(p)+r-<p-sin0-(—<p'-(cos<pi’+sincpj’))
Moreover:
d P, L L ., S
E(r«p-smO-U(p)=(r-(p-sm9+r-<p-sm9+r-<p-9-cos€)U(p
—r-@?-sinf-(cospi+sing))

As we can see, cartesian unit vectors 7 and J appear in the back expression. So, to express

them in terms of spherical coordinates, we can use the inverse of the following orthogonal

matrix:
U sinf-cos¢@ sin@-singp cosH 1
U_e) = (cosq)-cose sing - cos 0 —sinG)x i
U, —sin @ CoSs @ 0 k
@

The inverse of this matrix is expressed as follows:

U sin@-cosg cos@-cosep -—sing Ur
J =<Sin9-singo cos 0 -sing cosq)>>< Uy
k cos 8 —siné 0 U_(p)

As a consequence:
{=sin6-cosq Ur)+c059-cos<p ﬁ;—sintpﬁg
j=sin6-sing w+c059-sing0 U_9)+ cos @ U_(p)

k = cos 6 ﬁ:—sine f];
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Chapter 1 Kinematics of a particle
Now, let’s replace 7 and J in the expression second term
i(.'.'Q.U_’)__.-Z.-ZQF’_ c 9% -sin 0 Ua
dtr(psm 9)=—T @"-sin r — T-@°-sinfcos P
+(7"-<p-sin9+r-¢i-sin9+ r-<p-0‘-cosl9)U_(p)
» Third term:
Starting from the expression:
d R d R d .. — .od o
E (T’HU@) —% (T‘)HU@ +T"a (Q)Ug +T"9'E (Ug)
This term can be expressed as follows:
d . —_— . . —_— [XJ —_— . d —_—
7 (r-e-u,,)=r-9-U9+r-9-U9+r-9E (Uy)

Let’s develop the differentiation of the polar unit vector (79)) with respect to time:

d?)—d( 0 T+ si 0 j—sin6 k)
dt 0 _dt CoOS @ - cos l Sing -cosv j Sin

d —. d ,od . R
a(Ug)—a(COS(p'COSQ)l+E(Sln(p cosﬁ)j—a(sme)k

Now, let’s distribute the differentiation:
d — d d u
T Ug) = [E(cosgo)-cose +cos<p-a(cos 0)] l

d _ d I
+[E(sm<p)-cos€+sm<p a(cos@)]j—a(sme)k

So, the complete expression for % (U_g)) is:
d .
I (Ug) = [(—¢ -singp) - cos 6 + cos ¢ - (=8 -sinB)]| T
+ [gb *cos@ - cosO +sing - (—9 -sinH)]f— 6-cosb k
Now, let's simplify further:
d ) .
a (Ug) = [—([)-sin(p-cose —9-cos<p-sin0] l

+[<p-cos<p-c059—é-sinq)-sine]f—é-cos@ K
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Chapter 1 Kinematics of a particle

Rearranging the last expression leads to:

d
T (Ug) =@ cosB-(=sing T+ cosq J)
'4»
=U,
+9-(‘cos<p-sin9 T+ sing-sinb j+cosb k’)

Y —
:Ur

At the end the differentiation of the polar unit vector (U—g)) 1s articulated as follows
d —> . — . —
ar (Ug) =¢@-cosOU,+ 6-U,

Now let’s replace this back in the expression of the third term:

d N —_— o —_— o —> o RN o —_
&(r-G-Ug)=7'”-9-U9+r-9-U9+r-6-<p'-cosl9Uq,+ r-62-U,

Now, let's simplify moreover:

d R o : s : .
E(r-H-U9)=r 02U, +(F-0+71-0)Ug+71-0-¢-cos6U,

After being rearranged, the third term becomes:

d R . : . : i —
E(r-H-Ug)=—r-92Ur+r-0-<p'-COSQU(p+(7'"-9+r-9)U9

The addition of the three terms lead to the determination of the acceleration expression:

—

a= i"-l_fr+r'-<p-sin9U—(p)+7'”-9U_9)— r-@?-sin?0 U, — r-¢%-sin@-cos6 U,

+ (T¢Sln9+r(p5m9_|_ r'é'(ﬁ'COS@)U_@)—r-QZﬁ:
+7’-9-<p’-cosHU_(p)+(f.g'+r.é)Ue*

The rearranging of this expression lead to the formula of the acceleration vector (@) in
spherical coordinates:
i= (F—r-02- r-gbz-sinze)l_fr+(r-é+2f*-9— r-gbz-sinH-cose)m
+(r-gb-sin0+21'*-gb-sin9+2r-9-go'-cosH)U_¢:

Therefore, the components of the acceleration vector (d) are:

a, =F—1r-0%—r-¢?-sin’6

ag=7r-0+27-0— r-¢*-sinf-cosb
=r-$-sinf+27-¢-sin@+2r-0-¢-cosb

Ay
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