Tutorial Sheet $\mathrm{N}^{\circ} 4: \mathbf{2}^{\text {nd }}$ law of Newton \& differential equations of motion

Exercise 01

An object with a mass (m) is moving along a straight line and subjected to a force $F=F_{0} \cdot e^{-k t}$.
At $t=0, P$ is located at $x_{0}=0$ and has an initial velocity $V_{0}=0$.
1 - Represent the forces acting on the moving object.
2- Find the velocity and position of the body at time t.

Exercise 02

The particle slides from the top of a sphere with radius R. It has a mass (m), and the motion occurs with a friction coefficient (μ). (See the figure).

3- Represent the forces acting on the moving particle.
4- Write down the differential equations that describe the motion of the body during its slide? (Projection on the polar coordinates axes).
5- To determine the velocity at which the particle leaves the surface of the sphere, disregarding friction and initial velocity ($\mu=0$ and $V_{0}=0$)?

