Chapitre II: Les grammaires

I- Introduction: pour définir un langage contenant un nombre fini de mots, il suffit de citer ces mots (définition par extension). Mais lorsque le langage est infini, nous avons recours à un système qui nous permet de générer les mots, ce système est appelé « grammaire ».

Exemple : soit Q le langage des nombres décimaux :

L'alphabet : $\{0,1,2,...,9,\bullet\}$

 $ND \rightarrow E \cdot F$ (entier, fractionnaire)

 $E \rightarrow CN / C$

 $C \rightarrow 0/1/2/.../9$

 $N \rightarrow C / CN$

 $F \rightarrow CN / C$

II- Définition formelle d'une grammaire :

- 1- **Définition**: une grammaire G est un 4-uplet $G=(V_T,V_N,S,R)$ tel que :
 - V_T : Vocabulaire Terminal $|V_T| = n$
 - V_N , : Vocabulaire Non Terminal $|V_N| = p$

tel que
$$V_T \cap V_N = \emptyset$$
 et $V_T \cup V_N = V$

- $S \in V_N$ un symbole particulier appelé Axiome (start symbol)
- R est un ensemble fini de règles tel que :
 (u→v) ∈ R et u ∈ V⁺ et v∈ V*, «→» signifie que u se réécrit en v.
- 2- La relation dérivation directe « \Rightarrow »:

Soit
$$G=(V_T,V_N,S,R)$$
 et x,y de mots de V^* , on dit que y dérive directement de x $(x \Rightarrow y)$ ssi $\exists (u \rightarrow v) \in R$ et $x=\alpha u\beta$ et $y=\alpha v\beta$ avec $\alpha,\beta \in V^*$

3- Relation « $\stackrel{*}{\Rightarrow}_{G}$ » fermeture transitive de « $\stackrel{*}{\Rightarrow}$ » :

On dit que y dérive de x ($x \stackrel{*}{\Rightarrow} y$) s'il existe une suite finie $w_0,...,w_p$ ($w_i \in V^*$) tel que :

$$\mathbf{x} = \mathbf{w}_0$$
 $\mathbf{y} = \mathbf{w}_p$ et $\mathbf{w}_i \underset{G}{\Rightarrow} \mathbf{w}_{i+1}$
 $\mathbf{x} \underset{G}{\Rightarrow} \mathbf{w}_1 \underset{G}{\Rightarrow} \mathbf{w}_2 \dots \mathbf{w}_{i-1} \underset{G}{\Rightarrow} \mathbf{y}$

4- Langage généré par une grammaire :

Le langage engendré par une grammaire G est définie par :

$$L(G) = \{ x / (x \in V_T^*) \text{ et } (S \stackrel{*}{\Rightarrow} x) \}$$

Remarque: Soient G1 et G2 deux grammaires:

$$[L(G1) = L(G2)] \Leftrightarrow [G1 \text{ est \'equivalente \`a } G2]$$

Exemples:

1- Soit G1= (
$$\{a,b\},\{S\},S,R$$
) avec R : S \to aSb / ab L(G1) = $\{a^nb^n / n \ge 1\}$

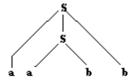
2- Soit G2= ({a,b},{S,A,B},S,R) avec R : S
$$\rightarrow$$
 aA A \rightarrow aA / aB B \rightarrow bB / b L(G2) = {a^pbⁿ / p \geq 2, n \geq 1 }

5- Arbres de dérivation :

Soit la grammaire $G=(V_T,V_N,S,R)$, arbre étiqueté est un " arbre de dérivation' dans G ssi :

- L'alphabet des étiquettes est inclus dans $V_N \cup V_T$.
- Les nœuds sont étiquetés par des éléments de V_N.
- Les feuilles sont étiquetées par des éléments de V_T.
- L'étiquette de la racine est l'axiome
- Pour tout nœud étiqueté par A et ses fils étiquetés par $f_1, f_2, ..., f_n$ est associé une règle R de la forme $A \longrightarrow f_1 f_2 ... f_n$ dans G

Exemple : mot a^2b^2 dans G_1



Règles de G_1 appliquées : $S \rightarrow^1 aSb \rightarrow^2 aabb$

III- *Classification de Chomsky*: il existe 4 types de grammaires. Cette classification est faite suivant la forme des règles de réécriture.

1- Grammaire de type 0:(grammaire sans restriction)

Une grammaire est de type 0 si ses règles ne sont soumises à aucune condition : $\mathbf{u} \rightarrow \mathbf{v}$ avec $\mathbf{u} \in \mathbf{V}^+$ et $\mathbf{v} \in \mathbf{V}^*$

2- Grammaire de type 1 : (grammaire sous contexte, à contexte lié)

Une grammaire est de type 1 si toutes les règles sont de la forme :

$$u \rightarrow v \quad avec \quad |u| \leq |v|$$

Exemple:

Soit $G = (\{a,b,c\},\{S,B,C\},S,R)$ avec

R:
$$S \rightarrow aSBC / aBC$$
 $CB \rightarrow BC$ $aB \rightarrow ab$ $bB \rightarrow bb$ $bC \rightarrow bc$ $cC \rightarrow cc$

3- Grammaire de type 2 : (grammaire algébrique, à contexte libre) G est de type 2 si toutes ses règles sont de la forme :

$$A {\rightarrow}\, \alpha$$
 , avec $\alpha \in V^*$ et $A \in V_N$

4- Grammaire de type 3 : (grammaire régulière) G est de type 3 si toutes ses règles sont de la forme :

$$A\!\to aB$$
 , $A\to a$ $avec$ $a\in V_T$ et $A,B\in V_N$ Linéaire à Droite Ou exclusif

$$A \rightarrow Ba$$
, $A \rightarrow a$ avec $a \in V_T$ et $A,B \in V_N$ linéaire à Gauche

Remarque : toute grammaire de type i est aussi de type i-1.

IV- Types de langages :

Exemple: soit
$$G1 = (\{a,b\}, \{S,A,B\}, S,R)$$
 avec

$$R: S \rightarrow aS /ABb \quad A \rightarrow aA / a \quad B \rightarrow b$$

 $L(G1) = \{a^pb^2 / p \ge 1 \}$ **G1 est de type 2**

Soit G2=
$$({a,b},{S,A,B},S,R)$$
 avec

$$\begin{array}{ll} R:S\rightarrow aS/aA & A\rightarrow aA/bB & B\rightarrow b \\ L(G2)=\left\{a^pb^2/p\geq 1\right.\right\} \mbox{ G1 est de type 3} \end{array}$$

$$L(G1) = L(G2)$$
 donc L est de type 3

Définition : le type d'un langage est le type maximum des grammaires qui l'engendrent.

Remarques:

- Le type d'une grammaire augmente quand on augmente les conditions sur la forme des règles.
- Le type d'un langage diminue quand on augmente les conditions sur la forme des mots appartenant à ce langage.
- Une grammaire est dite ambiguë si un mot a au moins deux arbres de dérivations différents ou deux dérivations les plus à gauche différentes dans G.